PhD Summer School 2020

This 5-day summer school will focus on advances in remote sensing techniques useful in wind energy. The themes to be covered are development, instrument configuration, signal processing, data analysis and applications of various remote sensing instruments including LIDAR, SODAR and SAR both ground- and satellite-based instruments. Applied use includes wind resource mapping, wind profiling, power curve, wind loads, turbulence, and wind turbine control. Theoretical aspects of scattering and atmospheric boundary-layer characteristics relevant in remote sensing for wind energy will also be covered.

Practical experiments will demonstrate remote sensing methodologies, and advantages and limitations will be discussed.
Organizers:
Alfredo Peña (chair), Charlotte B. Hasager, Jakob Mann, Camilla Brix Olsen, Heidi Serny Jacobsen
Lecturers:
DTU Wind Energy: Alfredo Peña, Torben Mikkelsen, Ebba Dellwik, Nikolas Angelou, Charlotte B. Hasager, Michael Courtney, Elliot Simon, Gunhild Thorsen, Paula Gomez, Merete Badger, Jakob Mann, Mikael Sjöholm
DTU Space: Henning Skriver
ZX Lidars: Nathan Smith
Leosphere: Jean-Pierre Cariou
KNMI: Ad Stoffelen
Ørsted: Nicolai Nygaard
University of Uppsala: Johan Arnqvist
Flensburg University of Applied Sciences: David Schlipf
Secretary: Camilla Brix Olsen
We plan hands-on exercises. Please bring your laptop.
Credits:
Credits for the course are 2.5 ECTS.
This includes 34 hours of preparation time studying the recommended reading:
• Chapter 3 Climatological and meteorological aspects of predicting offshore wind energy
• Chapter 4: Atmospheric turbulence
• Chapter 5 Introduction to continuous-wave
• Chapter 6 Pulsed lidars
• Chapter 9 Lidars and wind turbine control
• Chapter 10 Lidars and wind profiles
The 'Compendium of the PhD Summer School: Remote Sensing for Wind Energy' is available athttp://orbit.dtu.dk/files/111814239/DTU_Wind_Energy_Report_E_0084.pdf
Chapter 2 Measurement methodologies for wind energy based on ground-level remote sensing in Sven-Erik Gryning, Torben Mikkelsen, Christophe Baehr, Alain Dabas, Paula Gomez, Ewan O’Connor, Lucie Rottner, Mikael Sjöholm, Irene Suomi, Nikola Vasiljevic: Renewable Energy Forecasting 1st Edition Elsevier.https://www.elsevier.com/books/renewable-energy-forecasting/kariniotakis/978-0-08-100504-0
Chapter 4 A time-space synchronization of coherent Doppler scanning lidars for 3D measurements of wind fieldsinVasiljevic, N2014,A time-space synchronization of coherent Doppler scanning lidars for 3D measurements of wind fields. Ph.D. thesis, DTU Wind Energy. DTU Wind Energy PhD, no. 0027(EN)http://orbit.dtu.dk/en/publications/a-timespace-synchronization-of-coherent-doppler-scanning-lidars-for-3d-measurements-of-wind-fields(e2519d99-5846-4651-947d-38c287452366).html
Airborne lidar athttps://en.wikipedia.org/wiki/Lidar#Airborne_lidar
Boudreault, L-E., Bechmann, A., Taryainen, L., Klemedtsson, L., Shendryk, I., & Dellwik, E. (2015). A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests.Agricultural and Forest Meteorology, 201, 86-97. DOI: 10.1016/j.agrformet.2014.10.014
Dagestad, K. F., Horstmann, J., Mouche, A., Perrie, W., Shen, H., Zhang, B., ... & Badger, M. (2012). Wind retrieval from synthetic aperture radar - an overview. In 4th SAR Oceanography Workshop (SEASAR 2012).
http://orbit.dtu.dk/fedora/objects/orbit:124632/datastreams/file_8597009d-84ec-485e-8bfc-6802a8606721/content
GUM: Guide to the Expression of Uncertainty in Measurement
http://www.bipm.org/en/publications/guides/gum.html
Lange, J, Mann, J, Angelou, N, Berg, J, Sjöholm, M& Mikkelsen, TK2016, 'Variations of the Wake Height over the Bolund Escarpment Measured by a Scanning Lidar'Boundary-Layer Meteorology, vol 159, pp. 147–159. DOI:10.1007/s10546-015-0107-8
Larsen, SE1993,Observing and modelling the planetary boundary layer. in E Raschke & D Jacob (eds),Energy and water cycles in the climate system.Springer-Verlag, Berlin, pp. 365-418. NATO Advanced Study Institute Series I: Global environmental change, 5
Mann, J., et al:Complex terrain experiments in the New European Wind Atlas.Phil. Trans. R. Soc. A, 375, no 2091, 20160101 (2017)10.1098/rsta.2016.0101
Peña A. (2009)Sensing the wind profile.Risø-PhD-45(EN), Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde.http://orbit.dtu.dk/fedora/objects/orbit:81302/datastreams/file_3737370/content
Sathe, A, Mann, J, Gottschall, J& Courtney, M2011, 'Can Wind Lidars Measure Turbulence?'Journal of Atmospheric and Oceanic Technology, vol 28, no. 7, pp. 853-868. DOI:10.1175/JTECH-D-10-05004.1
Sathe, A& Mann, J2013, 'A review of turbulence measurements using ground-based wind lidars'Atmospheric Measurement Techniques, vol 6, pp. 3147–3167.DOI:10.5194/amt-6-3147-2013
Sjöholm, M., Angelou, N., Hansen, P., Hansen, K. H., Mikkelsen, T., Haga, S., ...Starsmore, N. (2014). Two Dimensional Rotorcraft Downwash Flow Field Measurements by Lidar-Based Wind Scanners with Agile Beam Steering.Journal of Atmospheric and Oceanic Technology, 31(4), 930-937. DOI: 10.1175/JTECH-D-13-00010.1
Vasiljevic, N., & Courtney, M.(2017).Accuracy of dual-Doppler lidar retrievals of near-shore windsKgs. Lyngby: Danmarks Tekniske Universitet (DTU). WindEurope Resource Assessment Workshop 2017, Edinburgh, United Kingdom, 16/03/2017
Vasiljević, N.; Lea, G.; Courtney, M.; Cariou, J.-P.; Mann, J.; Mikkelsen, T. Long-Range WindScanner System.Remote Sens.2016,8, 896.
Vasiljević, N., Palma, J. M. L. M., Angelou, N., Matos, J.C., Menke, R., Lea, G., Mann, J., Courtney, M., Ribeiro, L.F.,and Gomes,V. M. M. G. C. Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments.Atmos. Meas. Tech.,10, 3463-3483, 2017
Wagner et al., Accounting for the wind speed shear in wind turbine power performance measurement,Wind Energy. 2011; 14:993–1004. doi: 10.1002/we.509
Wagner et al.,Uncertainty of power curve measurement with a two-beam nacelle-mounted lidar.Wind Energy. 2015;19:1269–1287. doi: 10.1002/we.1897
Cost for participants:
250 euros per PhD students
2000 euros per non-PhD students

Deadline for registration: 15 November 2020

Register for the course (Link)
The registration fee covers participation in the summer school, course material and listing of recommended reading, lunches and coffee breaks from Monday to Friday.

Registration DOES NOT include the hotel booking.

For further details e-mail Alfredo Pena ataldi@dtu.dk

Learning objectives:

A student who has met the objectives of the course will be able to:
• To explain basic principles of continuous-wave and pulsed Doppler lidar for wind energy
• To be able to interpret and analyse wind lidar data
• To describe ground-based and nacelle lidar used in power curve measurements
• To explain the basic principles of lidars for wind farm control
• To explain remote sensing techniques for observing turbulence and understand why lidars are not measuring the same turbulence as in-situ sensors
• To describe the capabilities and limitations of continuous-wave and pulsed Doppler lidar for measuring the wind flow over complex terrain
• To list the sensors needed to measure physical parameters related to the wind profile
• To be able to reconstruct orthogonal wind components from line-of-sight speeds
• To understand the main sources of uncertainty that impact lidar accuracy
• To develop a typical measurement plan using remote sensing devices for wind data
• To explain the basic principle of radar for wind and wake
• To gain an overview of meteorological parameters related to the use of wind lidar, aerial lidar and radar
• To understand temporal scales of flow characterization, main methods for wind resource assessment and major differences between on-shore and offshore flow related to wind energy
• To explain the basic principles of airborne lidar for land surface characterization
• To explain the principle behind Synthetic Aperture Radar (SAR) wind retrieval over the ocean

Program schedule

Time

Monday

7th December

Tuesday

8th December

Wednesday

9th December

Thursday

10th December

Friday

11th December

09:00 – 09:45

Welcome and introduction
Dr. Hans E. Jørgensen,
Dr.Alfredo Peña

Introduction to continuous wave lidar
Dr. Nathan Smith

Introduction to Aeolus
Dr. Ad Stoffelen

Turbulence I
Prof. Jakob Mann

Turbulence II
Prof. Jakob Mann

10:00 – 10:45

Introduction to remote sensing
Prof. Torben Mikkelsen

Exercise in continuous wave lidar
Dr. Mike Courtney
Mr. Nikolas Angelou

Introduction to SAR
Dr. Henning Skriver

Lidars for wind turbine control
Dr. David Schlipf

Lidar in complex terrain
Prof. Jakob Mann

11:00 – 11:45

Introduction tometeorology
Dr. Alfredo Peña

SAR for wind energy
Dr.Merete Badger

Lidars and wind profiles
Dr.Alfredo Peña

Lidars in wind tunnels
Dr. Mikael Sjöholm

12:00 – 13:00

Lunch picnic and walk

Lunch picnic and walk

Lunch at canteen

Lunch at canteen

Lunch picnic and walk

13:00 – 13:45

Aerial lidar for surface characterization
Dr. Ebba Dellwik

Hands on how to install a lidar
Dr. Elliot Simon
Ms. Gunhild Thorsen

Exercise in SAR
Dr. Merete Badger

Exercise in lidars and wind profiles
Dr.Alfredo Peña

Site visit
Dr. Mikael Sjöholm,
Mr. Nikolas Angelou

14:00 – 14:45

Exercise in aerial lidar
Dr. Ebba Dellwik

Pulsed lidars for wind energy
Dr. Jean-Pierre Cariou

Introduction to radar for wind and wake
Dr. Nicolai Nygaard

Lidars and turbulence
Prof. Jakob Mann

15:00 – 15:45

Introduction to wind power meteorology
Prof. Charlotte Hasager

Exercise in pulsed lidars
Dr. Elliot Simon
Ms. Gunhild Thorsen

Introduction to sodar
Dr. Johan Arnqvist

Scanning wind lidars
Dr. Mikael Sjöholm

Exercise in lidars and turbulence
Prof. Jakob Mann


Evaluation

16:00 – 16:45

Icebreaker reception

Lidars and power curves
Ms. Paula Gomez

Field visit
AQ Systems

Exercise in lidar coordinate system
Dr. Mikael Sjöholm