PhD Summer School 2022

13 – 17 June 2022 at DTU Wind and Energy Systems, Risø Campus, Roskilde

This 5-day summer school will focus on advances in remote sensing techniques useful in wind energy. The themes to be covered are development, instrument configuration, signal processing, data analysis and applications of various remote sensing instruments including LIDAR, SODAR and SAR both ground- and satellite-based instruments. Applied use includes wind resource mapping, wind profiling, power curve, wind loads, turbulence, and wind turbine control. Theoretical aspects of scattering and atmospheric boundary-layer characteristics relevant in remote sensing for wind energy will also be covered.

 

Practical experiments will demonstrate remote sensing methodologies, and advantages and limitations will be discussed.

Organizers:
Alfredo Peña (chair), Charlotte B. Hasager, Jakob Mann, Camilla Brix Olsen, Heidi Serny Jacobsen

Lecturers:
To be decided

Secretary: Camilla Brix Olsen

We plan hands-on exercises. Please bring your laptop.

Credits:
Credits for the course are 2.5 ECTS.

This includes 34 hours of preparation time studying the recommended reading:

  • Chapter 3 Climatological and meteorological aspects of predicting offshore wind energy
  • Chapter 4: Atmospheric turbulence
  • Chapter 5 Introduction to continuous-wave
  • Chapter 6 Pulsed lidars
  • Chapter 9 Lidars and wind turbine control
  • Chapter 10 Lidars and wind profiles

The 'Compendium of the PhD Summer School: Remote Sensing for Wind Energy' is available at http://orbit.dtu.dk/files/111814239/DTU_Wind_Energy_Report_E_0084.pdf

Chapter 2 Measurement methodologies for wind energy based on ground-level remote sensing in Sven-Erik Gryning, Torben Mikkelsen, Christophe Baehr, Alain Dabas, Paula Gomez, Ewan O’Connor, Lucie Rottner, Mikael Sjöholm, Irene Suomi, Nikola Vasiljevic: Renewable Energy Forecasting 1st Edition Elsevier. https://www.elsevier.com/books/renewable-energy-forecasting/kariniotakis/978-0-08-100504-0

Chapter 4 A time-space synchronization of coherent Doppler scanning lidars for 3D measurements of wind fields in Vasiljevic, N 2014, A time-space synchronization of coherent Doppler scanning lidars for 3D measurements of wind fields. Ph.D. thesis, DTU Wind Energy. DTU Wind Energy PhD, no. 0027(EN) http://orbit.dtu.dk/en/publications/a-timespace-synchronization-of-coherent-doppler-scanning-lidars-for-3d-measurements-of-wind-fields(e2519d99-5846-4651-947d-38c287452366).html
Airborne lidar at https://en.wikipedia.org/wiki/Lidar#Airborne_lidar

Boudreault, L-E., Bechmann, A., Taryainen, L., Klemedtsson, L., Shendryk, I., & Dellwik, E. (2015). A LiDAR method of canopy structure retrieval for wind modeling of heterogeneous forests. Agricultural and Forest Meteorology, 201, 86-97. DOI: 10.1016/j.agrformet.2014.10.014

Dagestad, K. F., Horstmann, J., Mouche, A., Perrie, W., Shen, H., Zhang, B., ... & Badger, M. (2012). Wind retrieval from synthetic aperture radar - an overview. In 4th SAR Oceanography Workshop (SEASAR 2012).
http://orbit.dtu.dk/fedora/objects/orbit:124632/datastreams/file_8597009d-84ec-485e-8bfc-6802a8606721/content

GUM: Guide to the Expression of Uncertainty in Measurement
http://www.bipm.org/en/publications/guides/gum.html

Lange, J, Mann, J, Angelou, N, Berg, J, Sjöholm, M& Mikkelsen, TK2016, 'Variations of the Wake Height over the Bolund Escarpment Measured by a Scanning Lidar'Boundary-Layer Meteorology, vol 159, pp. 147–159. DOI:10.1007/s10546-015-0107-8

Larsen, SE 1993, Observing and modelling the planetary boundary layer. in E Raschke & D Jacob (eds), Energy and water cycles in the climate system. Springer-Verlag, Berlin, pp. 365-418. NATO Advanced Study Institute Series I: Global environmental change, 5

Mann, J., et al: Complex terrain experiments in the New European Wind AtlasPhil. Trans. R. Soc. A, 375, no 2091, 20160101 (2017) 10.1098/rsta.2016.0101

Peña A. (2009) Sensing the wind profile. Risø-PhD-45(EN), Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Roskilde. http://orbit.dtu.dk/fedora/objects/orbit:81302/datastreams/file_3737370/content

Sathe, A, Mann, J, Gottschall, J& Courtney, M2011, 'Can Wind Lidars Measure Turbulence?'Journal of Atmospheric and Oceanic Technology, vol 28, no. 7, pp. 853-868. DOI:10.1175/JTECH-D-10-05004.1

Sathe, A& Mann, J2013, 'A review of turbulence measurements using ground-based wind lidars'Atmospheric Measurement Techniques, vol 6, pp. 3147–3167. DOI:10.5194/amt-6-3147-2013

Sjöholm, M., Angelou, N., Hansen, P., Hansen, K. H., Mikkelsen, T., Haga, S., ... Starsmore, N. (2014). Two Dimensional Rotorcraft Downwash Flow Field Measurements by Lidar-Based Wind Scanners with Agile Beam Steering. Journal of Atmospheric and Oceanic Technology, 31(4), 930-937. DOI: 10.1175/JTECH-D-13-00010.1

Vasiljevic, N., & Courtney, M. (2017). Accuracy of dual-Doppler lidar retrievals of near-shore winds Kgs. Lyngby: Danmarks Tekniske Universitet (DTU). WindEurope Resource Assessment Workshop 2017, Edinburgh, United Kingdom, 16/03/2017

Vasiljević, N.; Lea, G.; Courtney, M.; Cariou, J.-P.; Mann, J.; Mikkelsen, T. Long-Range WindScanner System. Remote Sens. 20168, 896.

Vasiljević, N., Palma, J. M. L. M., Angelou, N., Matos, J.C., Menke, R., Lea, G., Mann, J., Courtney, M., Ribeiro, L.F.,and GomesV. M. M. G. C. Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments. Atmos. Meas. Tech., 10, 3463-3483, 2017

Wagner et al., Accounting for the wind speed shear in wind turbine power performance measurement, Wind Energy. 2011; 14:993–1004. doi: 10.1002/we.509

Wagner et al., Uncertainty of power curve measurement with a two-beam nacelle-mounted lidar. Wind Energy. 2015; 19:1269–1287. doi: 10.1002/we.1897

Cost for participants:
250 euros per PhD students 
2000 euros per non-PhD students

Deadline for registration:  30 May 2022

Register for the course (Link)

The registration fee covers participation in the summer school, course material and listing of recommended reading, lunches and coffee breaks from Monday to Friday. 

Registration DOES NOT include the hotel booking.

For further details e-mail Alfredo Pena at aldi@dtu.dk


Learning objectives:

A student who has met the objectives of the course will be able to:
• To explain basic principles of continuous-wave and pulsed Doppler lidar for wind energy
• To be able to interpret and analyse wind lidar data
• To describe ground-based and nacelle lidar used in power curve measurements
• To explain the basic principles of lidars for wind farm control
• To explain remote sensing techniques for observing turbulence and understand why lidars are not measuring the same turbulence as in-situ sensors
• To describe the capabilities and limitations of continuous-wave and pulsed Doppler lidar for measuring the wind flow over complex terrain
• To list the sensors needed to measure physical parameters related to the wind profile
• To be able to reconstruct orthogonal wind components from line-of-sight speeds
• To understand the main sources of uncertainty that impact lidar accuracy
• To develop a typical measurement plan using remote sensing devices for wind data
• To explain the basic principle of radar for wind and wake
• To gain an overview of meteorological parameters related to the use of wind lidar, aerial lidar and radar
• To understand temporal scales of flow characterization, main methods for wind resource assessment and major differences between on-shore and offshore flow related to wind energy
• To explain the basic principles of airborne lidar for land surface characterization
• To explain the principle behind Synthetic Aperture Radar (SAR) wind retrieval over the ocean



Program schedule, tentative

Time

Monday

Tuesday

 

Wednesday

 

Thursday

 

Friday

 

09:00 – 09:45

Welcome and introduction

Introduction to continuous wave lidar

Introduction to Aeolus

Turbulence I


Turbulence II

10:00 – 10:45

Introduction to remote sensing

Exercise in continuous wave lidar

Introduction to SAR

 

Lidars for wind turbine control

Lidar in complex terrain

11:00 – 11:45

Introduction tometeorology

SAR for wind energy

Lidars and wind profiles
Lidars in wind tunnels

12:00 – 13:00

Lunch picnic and walk Lunch picnic and walk
Lunch at canteen
Lunch at canteen Lunch picnic and walk

13:00 – 13:45

Aerial lidar for surface characterization

Hands on how to install a lidar

Exercise in SAR

Exercise in lidars and wind profiles



Site visit

14:00 – 14:45

Exercise in aerial lidar

Pulsed lidars for wind energy

Introduction to radar for wind and wake

Lidars and turbulence

15:00 – 15:45

Introduction to wind power meteorology

Exercise in pulsed lidars
Introduction to sodar

Scanning wind lidars


Exercise in lidars and turbulence


Evaluation


16:00 – 16:45

Icebreaker reception
Lidars and power curves
Field visit


Exercise in lidar coordinate system